
Fuzzy Sets

• Basic definitions

• Aggregation operators

• Extension principle
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Crisp sets
Collection of definite, well-definable objects 

(elements) to form a whole.

Representation of sets:
• list of all elements

A={x1, …,xn}, xj ∈ X

• elements with property P

A={x|x satisfies P},x ∈ X

• Venn diagram

• characteristic function
fA: X → {0,1}, 
fA(x) = 1, ⇔ x ∈ A
fA(x) = 0, ⇔ x ∉ A

A
X

Real numbers larger than 3:

0

1

3
X



• Sets with fuzzy, gradual boundaries
(Zadeh 1965)

• A fuzzy set A in X is characterized by its 
membership function µA: X → [0,1]

A fuzzy set A is completely 
determined by the set of 
ordered pairs

   A={(x,µA(x))| x ∈ X}

X is called the domain or 
universe of discourse

Real numbers about 3:

0

1

3

X

µA(x)



Fuzzy sets on discrete universes
Fuzzy set C = “desirable city to live in”

X = {SF, Boston, LA} (discrete and non-ordered)
C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

Fuzzy set A = “sensible number of children”
X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)
A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}
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• Fuzzy set B = “about 50 years old”
X = Set of positive real numbers (continuous)

B = {(x, µB(x)) | x in X}

µB x
x

( ) =
+ −





1

1
50

10

2

M
em

be
rs

hi
p 

G
ra

de
s

A g e



Notation
Many texts (especially older ones) do not use a 

consistent and clear notation

A x xA
x X

i i

i

=
∈
∑µ ( ) / A x xA

X

= ∫ µ ( ) /

X is discrete X is continuous

Note that Σ and integral signs stand for the union of 
membership grades; “/” stands for a marker and does 
not imply division.
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Fuzzy partition
Fuzzy partition formed by the linguistic values 

“young”, “middle aged”, and “old”:
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Support, core, singleton
The support of a fuzzy set A in X is the crisp subset of X 

whose elements have non-zero membership in A: supp(A) 
= {x ∈ X | µA(x)>0}

The core of a fuzzy set A in X is the crisp subset of X whose 
elements have membership 1 in A: core(A) = {x ∈ X | 
µA(x)=1}

Support

µ

X

1

0
Core

A
Singleton
fuzzy set
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Normal fuzzy sets
The height of a fuzzy set A is the maximum value 

of µA(x)
A fuzzy set is called normal if its height is 1, 

otherwise it is called sub-normal

height(A)

µ

X

1

0

A

B

A is normal, B is sub-normal



α-cut of a fuzzy set (level set)
An α-level set of a fuzzy set A of X is a crisp set 

denoted by Aα and defined by

Aα={x∈X ∣μA( x )≥α}, α>0

µ

α-level set X

1

0

A

α



“Resolution principle”
Every fuzzy set A can be uniquely represented as a 

collection of α-level sets according to

)]([sup)(
]1,0[
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µ



))(),(min())1(( 2121 xxxx AAA µµλλµ ≥−+
Alternatively, A is convex if all its α-cuts are 
convex

Convexity of fuzzy sets
A fuzzy set A is convex if for any λ in [0, 1] and any x1, x2 

in the support set,
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(b) A Nonconvex Fuzzy Set

x2 x1
μA( λx1+(1−λ ) x2)≥λ μA( x1)+(1−λ) μA( x2 )



0)(lim and    

 0)(lim if closed is set fuzzy A 

1)(lim and    

 0)(lim ifright open  is set fuzzy A 

0)(lim and    

 1)(lim ifleft open  is set fuzzy A 

),()(

i.e. ,point certain  a around

symmetric is MF its if symmetric is set fuzzy A 

=
=

=
=

=
=

∈∀−=+
=

+∞→

−∞→

+∞→

−∞→

+∞→

−∞→

x

xA

x

xA

x

xA

Xxxcxc

cx

A

Ax

Ax

Ax

Ax

Ax

Ax

AA

µ
µ

µ
µ

µ
µ

µµ



Fuzzy number, width
A fuzzy number is a fuzzy set in the line of real 

numbers that is normal and convex
Fuzzy numbers are the most basic types of fuzzy 

sets (convex and normal)
For a normal and convex fuzzy set A, the width is 

defined as the area under the membership 
function

If the membership function is trapezoidal,  
width ( A)=∣x 2−x 1∣

where μA( x1)=μA( x 2)=0.5



Set theoretic operations
Subset:

Complement:

Union:

Intersection:

A B A B⊆ ⇔ ≤µ µ

)()())(),(max()( xxxxxBAC BABAc µµµµµ ∨==⇔∪=

)()())(),(min()( xxxxxBAC BABAc µµµµµ ∧==⇔∩=

A X A x x
A A= − ⇔ = −µ µ( ) ( )1

(Specific case)
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The average of fuzzy sets A and B in X is defined by

2

)()(
)(2/)(

xx
x BA

BA

µµµ +=+

Note that the classical set theory does not have averaging 
as a set operation. This is an extension provided by the 
fuzzy set approach.
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Cartesian product
Cartesian product of fuzzy sets A and B is a fuzzy 

set in the product space X x Y with membership

Cartesian co-product of fuzzy sets A and B is a 
fuzzy set in the product space X x Y with 
membership

))(),(min(),( yxyx BABA µµµ =×

))(),(max(),( yxyx BABA µµµ =+



Membership Function 
formulation
Triangular MF: trimf ( x ; a ,b , c )=max (min( x−a

b−a
, c−x
c−b ) ,0 )

Trapezoidal MF: trapmf ( x ;a ,b , c ,d )=max (min ( x−a
b−a

,1,
d−x
d−c ) ,0)

Generalized bell MF: a

b
cx

cbaxgbellmf 2

1

1
),,;(

−+
=

Gaussian MF: gaussmf ( x ;a ,b )=e
−

1
2 ( x−a

b )
2



MF formulation
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(a) Triangular MF
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(b) Trapezoidal MF
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(c) Gaussian MF
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(d) Generalized Bell MF
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(a) y1 = sig(x;1,-5); y2 = sig(x;2,5)
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Sigmoidal MF:
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MF formulation
L/R type function:

F
L
(0)=1

F
L
(x)<1 for all x>0

F
L
(x)=0 for x  infinity→

F x xL ( ) max( , )= −0 1 2

F x xR ( ) exp( )= − 3



MF formulation
L-R MF:

LR x c
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Example: F x xL ( ) max( , )= −0 1 2 F x xR ( ) exp( )= − 3
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The cylindrical extension of fuzzy set A in X into Y results 
in a two-dimensional fuzzy set in X x Y, and is given by

yxyx ACEA
∀= ),(),( µµ
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• General requirements:

– Boundary: N(0)=1 and N(1) = 0

– Monotonicity: N(a) > N(b) if a < b

– Involution: N(N(a)) = a
• Two types of fuzzy complements:

– Sugeno’s complement:

– Yager’s complement:

N a
a
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N a aw
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• Basic requirements:

– Boundary: T(0, a) = 0, T(a, 1) = T(1, a) = a

– Monotonicity: T(a, b) <= T(c, d) if a <= c and b <= d

– Commutativity: T(a, b) = T(b, a)

– Associativity: T(a, T(b, c)) = T(T(a, b), c)

Generalized intersection
(Triangular/T-norm)



• Examples:

– Minimum: 

– Algebraic product: 

– Bounded product: 

– Drastic product:  

T (a , b )=min(a ,b)=a∧b

T (a , b )=a⋅b

T (a , b )=max (0,( a+b−1 ))

Generalized intersection
(Triangular/T-norm)

T (a , b )={
a if b=1
b if a=1
0 otherwise ]
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• Basic requirements:

– Boundary: S(1, a) = 1, S(a, 0) = S(0, a) = a
– Monotonicity: S(a, b) < S(c, d) if a < c and b < d

– Commutativity: S(a, b) = S(b, a)
– Associativity: S(a, S(b, c)) = S(S(a, b), c)

• Examples:

– Maximum: 

– Algebraic sum: 

– Bounded sum: 

– Drastic sum

babaS ∨=),(

bababaS ⋅−+=),(

)(1),( babaS +∧=



Maximum:
Sm(a, b)

Algebraic
sum:

Sa(a, b)

Bounded
sum:

Sb(a, b)

Drastic
sum:

Sd(a, b)
≤ ≤≤
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Generalized De Morgan’s Law
T-norms and T-conorms are duals which support the 

generalization of DeMorgan’s law:
T(a, b) = N(S(N(a), N(b)))
S(a, b) = N(T(N(a), N(b)))

Tm(a, b)
Ta(a, b)
Tb(a, b)
Td(a, b)

Sm(a, b)
Sa(a, b)
Sb(a, b)
Sd(a, b)



Parameterized T-norm and S-norm
Parameterized T-norms and dual T-conorms have 

been proposed by several researchers:
Yager
Schweizer and Sklar
Dubois and Prade
Hamacher
Frank
Sugeno
Dombi
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Fuzzy relation
A fuzzy relation R between X and Y is a 2-D fuzzy 

subset of X x Y

with

Examples:
x is close to y
x and y are similar
x and y are related (dependent)

R x y x y x y X YR= ∈ ×{(( , ), ( , ))|( , ) }µ

]1,0[: →×YXRµ



Discrete fuzzy relations
Relation: “is an important trade partner of”

Holland Germany USA Japan
Holland 1 0.9 0.5 0.2

Germany 0.3 1 0.4 0.2
USA 0.3 0.4 1 0.7

Japan 0.6 0.8 0.9 1



Max-min composition
The max-min composition of two fuzzy relations R 

(defined on X and Y) and S (defined on Y and Z) 
is

The result is the combined relation defined on X 
and Z

)],(),([),( zyyxzx SR
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Max-product composition
The max-product composition of two fuzzy 

relations R (defined on X and Y) and S (defined 
on Y and Z) is

The result is the combined relation defined on X 
and Z
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Extension principle
A basic concept of fuzzy set theory
General procedure to extend crisp mathematical 

expressions to fuzzy domains
Generalizes a point-to-point mapping into a mapping 

between fuzzy sets
Extends naturally to compositional rule of inference

3



A is a fuzzy set on X :

A x x x x x xA A A n n= + + +µ µ µ( ) / ( ) / ( ) /1 1 2 2 

The image of A under f( ) is a fuzzy set B:

B x y x y x yB B B n n= + + +µ µ µ( ) / ( ) / ( ) /1 1 2 2 

where yi = f(xi), i = 1 to n.

If f( ) is a many-to-one mapping, then
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x f y
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