http://www.liacs.nl/home/snijssen/CI/

Fuzzyy Sets

- Basic definitions
- Aggregation operators

Extension principle

Crisp sets

- Collection of definite, well-definable objects (elements) to form a whole.

Representation of sets:

- list of all elements

$$
A=\left\{x_{1}, \ldots, x_{n}\right\}, x_{j} \in X
$$

- elements with property P $A=\{x \mid x$ satisfies $P\}, x \in X$
- Venn diagram

- characteristic function $f_{A}: X \rightarrow\{0,1\}$,
$f_{A}(x)=1, \Leftrightarrow x \in A$
$f_{A}(x)=0, \Leftrightarrow x \notin A$
Real numbers larger than 3:

Fuzzy sets

- Sets with fuzzy, gradual boundaries (Zadeh 1965)
- A fuzzy set A in X is characterized by its membership function $\mu_{A}: X \rightarrow[0,1]$

A fuzzy set A is completely determined by the set of ordered pairs
$\mathrm{A}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{X}\right\}$
X is called the domain or
Real numbers about 3:
universe of discourse

Fuzzy sets on discrete universes

- Fuzzy set $\mathrm{C}=$ "desirable city to live in" $\mathrm{X}=\{\mathrm{SF}$, Boston, LA $\}$ (discrete and non-ordered) $\mathrm{C}=\{(\mathrm{SF}, 0.9),($ Boston, o.8), (LA, o.6) $\}$
- Fuzzy set A = "sensible number of children" $\mathrm{X}=\{0,1,2,3,4,5,6\}$ (discrete universe) $\mathrm{A}=\{(0, .1),(1, .3),(2, .7),(3,1),(4, .6),(5, .2),(6, .1)\}$

Numberof Children

Fuzzy sets on continuous universes

- Fuzzy set B = "about 50 years old"

$$
\begin{aligned}
& \mathrm{X}=\text { Set of positive real numbers (continuous) } \\
& B=\left\{\left(x, \mu_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \text { in } \mathrm{X}\right\} \\
& \mu_{B}(x)=\frac{1}{1+\left(\frac{x-50}{10}\right)^{2}}
\end{aligned}
$$

Notation

Many texts (especially older ones) do not use a consistent and clear notation

X is discrete

$$
\begin{array}{ll}
\mathrm{X} \text { is discrete } & \mathrm{X} \text { is continuous } \\
A=\sum_{x_{i} \in X} \mu_{A}\left(x_{i}\right) / x_{i} & A=\int_{X} \mu_{A}(x) / x \\
A=\sum_{x_{i} \in X} \mu_{A}\left(x_{i}\right) x_{i} & A=\int_{X} \mu_{A}(x) x
\end{array}
$$

Note that Σ and integral signs stand for the union of membership grades; "l" stands for a marker and does not imply division.

Fuzzy partition

Fuzzy partition formed by the linguistic values "young", "middle aged", and "old":

Support, core, singleton

- The support of a fuzzy set A in X is the crisp subset of X whose elements have non-zero membership in $A: \operatorname{supp}(A)$ $=\left\{x \in X \mid \mu_{A}(x)>0\right\}$
- The core of a fuzzy set A in X is the crisp subset of X whose elements have membership 1 in A : core $(A)=\{x \in X \mid$ $\left.\mu_{\mathrm{A}}(\mathrm{x})=1\right\}$

Normal fuzzy sets

- The height of a fuzzy set A is the maximum value of $\mu_{\mathrm{A}}(\mathrm{x})$
- A fuzzy set is called normal if its height is 1 , otherwise it is called sub-normal

α-cut of a fuzzy set (level set)

- An α-level set of a fuzzy set A of X is a crisp set denoted by A_{α} and defined by

$$
A_{\alpha}=\left\{x \in X \mid \mu_{A}(x) \geq \alpha\right\}, \quad \alpha>0
$$

"Resolution principle"

Every fuzzy set A can be uniquely represented as a collection of α-level sets according to

$$
\mu_{A}(x)=\sup _{\alpha \in[0,1]}\left[\alpha \mu_{A_{\alpha}}(x)\right]
$$

Resolution principle

Convexity of fuzzy sets

A fuzzy set A is convex if for any λ in $[0,1]$ and any $\mathrm{x} 1, \mathrm{x} 2$ in the support set,
$\mu_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right)$ Alternatively, A is convex if all its α-cuts are convex

$$
\begin{aligned}
& \text { (a) Two Convex Fuzzy Sets } \\
& \text { (b) A Nonconvex Fuzzy Set } \\
& \mu_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda \mu_{A}\left(x_{1}\right)+(1-\lambda) \mu_{A}\left(x_{2}\right)
\end{aligned}
$$

Symmetry, left-right open

A fuzzy set A is symmetric if its MF is symmetric around a certain point $x=c$, i.e.
$\mu_{A}(c+x)=\mu_{A}(c-x), \quad \forall x \in X$

A fuzzy set A is open left if $\lim _{x \rightarrow-\infty} \mu_{A}(x)=1$ and $\lim _{x \rightarrow+\infty} \mu_{A}(x)=0$
A fuzzy set A is open right if $\lim _{x \rightarrow-\infty} \mu_{A}(x)=0$ and $\lim _{x \rightarrow+\infty} \mu_{A}(x)=1$
A fuzzy set A is closed if $\lim _{x \rightarrow-\infty} \mu_{A}(x)=0$ and $\lim _{x \rightarrow+\infty} \mu_{A}(x)=0$

Fuzzy number, width

- A fuzzy number is a fuzzy set in the line of real numbers that is normal and convex
- Fuzzy numbers are the most basic types of fuzzy sets (convex and normal)
- For a normal and convex fuzzy set A, the width is defined as the area under the membership function
- If the membership function is trapezoidal,

$$
\begin{aligned}
& \text { width }(A)=\left|x_{2}-x_{1}\right| \\
& \text { where } \mu_{A}\left(x_{1}\right)=\mu_{A}\left(x_{2}\right)=0.5
\end{aligned}
$$

Set theoretic operations (Specific case)

- Subset:

$$
A \subseteq B \Leftrightarrow \mu_{A} \leq \mu_{B}
$$

- Complement:

$$
\bar{A}=X-A \Leftrightarrow \mu_{\bar{A}}(x)=1-\mu_{A}(x)
$$

- Union:

$$
C=A \cup B \Leftrightarrow \mu_{c}(x)=\max \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \vee \mu_{B}(x)
$$

- Intersection:

$$
C=A \cap B \Leftrightarrow \mu_{c}(x)=\min \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \wedge \mu_{B}(x)
$$

Set theoretic operations

(a) Fuzzy Sets A and B
$A \not B \mu_{A}(x) \leq \mu_{B}(x)$
(c) Fuzzy Set "A OR B"

(b) Fuzzy Set "not A"

(d) Fuzzy Set "A AND B"

Average

The average of fuzzy sets A and B in X is defined by

$$
\mu_{A+B) / 2}(x)=\frac{\mu_{A}(x)+\mu_{B}(x)}{2}
$$

Note that the classical set theory does not have averaging as a set operation. This is an extension provided by the fuzzy set approach.

Combinations with negation

Note: De Morgan laws do hold in fuzzy set theory!

Cartesian product

- Cartesian product of fuzzy sets A and B is a fuzzy set in the product space $\mathrm{X} \times \mathrm{Y}$ with membership

$$
\mu_{A \times B}(x, y)=\min \left(\mu_{A}(x), \mu_{B}(y)\right)
$$

- Cartesian co-product of fuzzy sets A and B is a fuzzy set in the product space X x Y with membership

$$
\mu_{A+B}(x, y)=\max \left(\mu_{A}(x), \mu_{B}(y)\right)
$$

Membership Function

formulation

Triangular MF:

$$
\operatorname{trimf}(x ; a, b, c)=\max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b}\right), 0\right)
$$

Trapezoidal MF:

$$
\operatorname{trapmf}(x ; a, b, c, d)=\max \left(\min \left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right), 0\right)
$$

Gaussian MF:

$$
\operatorname{gaussmf}(x ; a, b)=e^{-\frac{1}{2}\left(\frac{x-a}{b}\right)^{2}}
$$

Generalized bell MF: $\quad \operatorname{gbellm} f(x ; a, b, c)=\frac{1}{1+\left|\frac{x-c}{b}\right|^{2 a}}$

MF formulation

Generalized bell MF

MF formulation

Sigmoidal MF:

$$
\operatorname{sigmf}(x ; a, b, c)=\frac{1}{1+e^{-a(x-c)}}
$$

Extensions:

(a) $\mathrm{y} 1=\operatorname{sig}(\mathrm{x} ; 1,-5) ; \mathrm{y} 2=\operatorname{sig}(\mathrm{x} ; 2,5)$

(c) $y 1=\operatorname{sig}(x ; 1,-5) ; y 3=\operatorname{sig}(x ;-2,5)$
(b) $|y 1-y 2|$

(d) $y 1^{*} y 3$

MF formulation

L/R type function:

- $F_{L}(0)=1$
- $F_{L}(x)<1$ for all $x>0$
- $F_{L}(x)=o$ for $x \rightarrow$ infinity
$F_{L}(x)=\sqrt{\max \left(0,1-x^{2}\right)}$
$F_{R}(x)=\exp \left(-|x|^{3}\right)$

MF formulation

$$
L R(x ; c, \alpha, \beta)=\left\{\begin{array}{l}
F_{L}\left(\frac{c-x}{\alpha}\right), x<c \\
F_{R}\left(\frac{x-c}{\beta}\right), x \geq c
\end{array}\right.
$$

Example: $\quad F_{L}(x)=\sqrt{\max \left(0,1-x^{2}\right)} \quad F_{R}(x)=\exp \left(-|x|^{3}\right)$

Cylindrical extension

The cylindrical extension of fuzzy set A in X into Y results in a two-dimensional fuzzy set in $\mathrm{X} \times \mathrm{Y}$, and is given by

$$
\mu_{C E_{A}}(x, y)=\mu_{A}(x), \forall y
$$

(a) Base Fuzzy Set A

(b) Cylindrical Extension of A

Projection (shadow)

Two-dimensional MF
(a) A Two-dimensional MF

Projection

 onto Y(c) Projection onto Y

2-D membership functions

(a) $z=\min (\operatorname{trap}(x), \operatorname{trap}(y))$

(c) $z=\min (\operatorname{bell}(x), \operatorname{bell}(y))$

(d) $z=\max (\operatorname{bell}(x)$, bell $(y))$

Generalized negation

- General requirements:
- Boundary: $N(0)=1$ and $N(1)=0$
- Monotonicity: $N(a)>N(b)$ if $a<b$
- Involution: $\mathrm{N}(\mathrm{N}(\mathrm{a}))=\mathrm{a}$
- Two types of fuzzy complements:
- Sugeno's complement:

$$
N_{s}(a)=\frac{1-a}{1+s a}
$$

- Yager's complement:

$$
N_{w}(a)=\left(1-a^{w}\right)^{1 / w}
$$

Sugeno's and Yager's complements

Sugeno's complement:

$$
N_{s}(a)=\frac{1-a}{1+s a}
$$

Yager's complement:

$$
N_{w}(a)=\left(1-a^{w}\right)^{1 / w}
$$

(a) Sugeno's Complements

(b) Yager's Complements

Generalized intersection (Triangular/T-norm)

- Basic requirements:
- Boundary: $T(0, a)=0, T(a, 1)=T(1, a)=a$
- Monotonicity: $\mathrm{T}(\mathrm{a}, \mathrm{b})<=\mathrm{T}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<=\mathrm{c}$ and $\mathrm{b}<=\mathrm{d}$
- Commutativity: $\mathrm{T}(\mathrm{a}, \mathrm{b})=\mathrm{T}(\mathrm{b}, \mathrm{a})$
- Associativity: $\mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}))=\mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}), \mathrm{c})$

Generalized intersection (Triangular/T-norm)

- Examples:
- Minimum:
- Algebraic product:
- Bounded product:
- Drastic product:

$$
\begin{aligned}
& T(a, b)=\min (a, b)=a \wedge b \\
& T(a, b)=a \cdot b \\
& T(a, b)=\max (0,(a+b-1)) \\
& T(a, b)=\left\{\begin{array}{cc}
a & \text { if } b=1 \\
b & \text { if } a=1 \\
0 & \text { otherwise }
\end{array}\right]
\end{aligned}
$$

T-norm operator

Generalized union (t-conorm)

- Basic requirements:
- Boundary: $S(1, a)=1, S(a, 0)=S(0, a)=a$
- Monotonicity: $\mathrm{S}(\mathrm{a}, \mathrm{b})<\mathrm{S}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<\mathrm{c}$ and $\mathrm{b}<\mathrm{d}$
- Commutativity: $S(a, b)=S(b, a)$
- Associativity: S(a, S(b, c)) = S(S(a, b), c)
- Examples:
- Maximum:
- Algebraic sum:
- Bounded sum:

$$
S(a, b)=a \vee b
$$

$S(a, b)=a+b-a \cdot b$
$S(a, b)=1 \wedge(a+b)$

- Drastic sum

T-conorm operator

Algebraic sum:
 $\mathrm{S}_{\mathrm{a}}(\mathrm{a}, \mathrm{b})$
 Bounded sum: $\mathrm{Sb}(\mathrm{a}, \mathrm{b})$

(b) Algebraic Sum

(c) Bounded Sum

Drastic sum: $S_{d}(a, b)$

(d) Drastic Sum

Generalized De Morgan’s Law

- T-norms and T-conorms are duals which support the generalization of DeMorgan's law:
- $T(a, b)=N(S(N(a), N(b)))$
- $\mathrm{S}(\mathrm{a}, \mathrm{b})=\mathrm{N}(\mathrm{T}(\mathrm{N}(\mathrm{a}), \mathrm{N}(\mathrm{b})))$

Parameterized T-norm and S-norm

- Parameterized T-norms and dual T-conorms have been proposed by several researchers:
- Yager
- Schweizer and Sklar
- Dubois and Prade
- Hamacher
- Frank
- Sugeno
- Dombi

Schweizer and Sklar $\lim _{p-r l} \frac{A(0)}{f(0)}=v^{n+c^{n+1}}$

$$
T_{S S}(a, b, p)=\left[\max \left\{0,\left(a^{-p}+b^{-p}-1\right)\right\}\right]^{-\frac{1}{p}} \lim _{p \rightarrow 0} T_{S S}(a, b, p)=a b
$$

$\lim _{p \rightarrow \infty} T_{S S}(a, b, p)=\min (a, b)$
(a) Two fuzzy sets A and B

(b) T-norm of A and B

(c) T-conorm (S-norm) of A and B

$S_{S S}(a, b, p)=1-\left[\max \left\{0,\left((1-a)^{-p}+(1-b)^{-p}-1\right)\right\}\right]^{-\frac{1}{p}}$

Fuzzy relation

A fuzzy relation R between X and Y is a 2- D fuzzy subset of $\mathrm{X} \times \mathrm{Y}$

$$
R=\left\{\left((x, y), \mu_{R}(x, y)\right) \mid(x, y) \in X \times Y\right\}
$$

with

$$
\mu_{R}: X \times Y \rightarrow[0,1]
$$

Examples:

- x is close to y
- x and y are similar
- x and y are related (dependent)

Discrete fuzzy relations

 Relation: "is an important trade partner of"| | Holland Germany | USA | Japan | |
| :---: | :---: | :---: | :---: | :---: |
| Holland | 1 | 0.9 | 0.5 | 0.2 |
| Germany | 0.3 | 1 | 0.4 | 0.2 |
| USA | 0.3 | 0.4 | 1 | 0.7 |
| Japan | 0.6 | 0.8 | 0.9 | 1 |

Max-min composition

The max-min composition of two fuzzy relations R (defined on X and Y) and S (defined on Y and Z) is

$$
\mu_{R^{\circ} S}(x, z)=\bigvee_{y}\left[\mu_{R}(x, y) \wedge \mu_{S}(y, z)\right]
$$

The result is the combined relation defined on X and Z

Max-min composition

R

$S \quad R^{\circ} S$
$\left[\begin{array}{lllllc}0 & 0.1 & 0.2 & 0.5 & 0.9 & 1 \\ 0 & 0.1 & 0.2 & 0.5 & 0.9 & 1 \\ 0 & 0.1 & 0.2 & 0.5 & 0.8 & 0.8 \\ 0 & 0.1 & 0.2 & 0.5 & 0.5 & 0.5 \\ 0 & 0.1 & 0.2 & 0.2 & 0.2 & 0.2\end{array}\right] \circ\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0.1 & 0.1 \\ 0 & 0.2 & 0.2 \\ 0 & 0.5 & 0.5 \\ 0 & 0.5 & 0.9 \\ 0 & 0.5 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 0.5 & 1 \\ 0 & 0.5 & 1 \\ 0 & 0.5 & 0.8 \\ 0 & 0.5 & 0.5 \\ 0 & 0.2 & 0.2\end{array}\right]$

Max-product composition

The max-product composition of two fuzzy relations R (defined on X and Y) and S (defined on Y and Z) is
$\left.\mu_{R^{\circ} S}(x, z)=M \mu_{R}(x, y) \cdot \mu_{S}(y, z)\right]$ y

The result is the combined relation defined on X and Z

Max-product composition

R
 $\mathrm{S} \quad \mathrm{R}^{\circ} \mathrm{S}$

$\left[\begin{array}{llllll}0 & 0.1 & 0.2 & 0.5 & 0.9 & 1 \\ 0 & 0.1 & 0.2 & 0.5 & 0.9 & 1 \\ 0 & 0.1 & 0.2 & 0.5 & 0.8 & 0.8 \\ 0 & 0.1 & 0.2 & 0.5 & 0.5 & 0.5 \\ 0 & 0.1 & 0.2 & 0.2 & 0.2 & 0.2\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0.1 & 0.1 \\ 0 & 0.2 & 0.2 \\ 0 & 0.5 & 0.5 \\ 0 & 0.5 & 0.9 \\ 0 & 0.5 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 0.5 & 1 \\ 0 & 0.5 & 1 \\ 0 & 0.4 & 0.8 \\ 0 & 0.25 & 0.5 \\ 0 & 0.1 & 0.2\end{array}\right]$

Extension principle

- A basic concept of fuzzy set theory
- General procedure to extend crisp mathematical expressions to fuzzy domains
- Generalizes a point-to-point mapping into a mapping between fuzzy sets
- Extends naturally to compositional rule of inference

Extension principle

A is a fuzzy set on X :

$$
A=\mu_{A}\left(x_{1}\right) / x_{1}+\mu_{A}\left(x_{2}\right) / x_{2}+\cdots+\mu_{A}\left(x_{n}\right) / x_{n}
$$

The image of A under $f()$ is a fuzzy set B :

$$
B=\mu_{B}\left(x_{1}\right) / y_{1}+\mu_{B}\left(x_{2}\right) / y_{2}+\cdots+\mu_{B}\left(x_{n}\right) / y_{n}
$$

where $y_{i}=f\left(x_{i}\right), i=1$ to n.
If $f()$ is a many-to-one mapping, then

$$
\mu_{B}(y)=\max _{x=f^{-1}(y)} \mu_{A}(x)
$$

Example
 Let

$$
A=\{(-2,0.1),(-1,0.4),(0,0.8),(1,0.9),(2,0.3)\}
$$

and

$$
f(x)=x^{2}-3
$$

Then, computing membership functions gives $\hat{B}=\{(1,0.1),(-2,0.4),(-3,0.8),(-2,0.9),(1,0.3)\}$
Consolidating, one obtains

$$
\begin{aligned}
B & =\{(-3,0.8),(-2,0.4 \vee 0.9),(1,0.1 \vee 0.3)\} \\
& =\{(-3,0.8),(-2,0.9),(1,0.3)\}
\end{aligned}
$$

Definition

$f: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow Y$
$y=f\left(x_{1}, \ldots, x_{n}\right)$
Suppose A_{1}, \ldots, A_{n} are n fuzzy sets in X_{1}, \ldots, X_{n} Then, fuzzy set B induced by f is given by
$\mu_{B}(y)=\left\{\begin{array}{l}\max _{\mathbf{x}, \mathbf{x}=f^{-1}(y)} \min _{i} \mu_{A_{i}}\left(x_{i}\right), \text { if } f^{-1}(y) \neq \varnothing \\ 0, \text { if } f^{-1}(y)=\varnothing\end{array}\right.$

Continuous case

